TY - JOUR
T1 - Advances in Development of Drug Treatment for Hemophilia with Inhibitors
AU - Wichaiyo, Surasak
N1 - Publisher Copyright:
© 2024 The Author. Published by American Chemical Society.
PY - 2024/12/13
Y1 - 2024/12/13
N2 - Patients with hemophilia A and B who have inhibitors face limited treatment options, because replacement therapy with clotting factor VIII or IX concentrates is ineffective, particularly for patients with high-titer inhibitors. Current mainstay therapies include immune tolerance induction (through frequent injections of clotting factor VIII or IX concentrates) to eradicate inhibitors and bypassing agents (such as recombinant activated clotting factor VII and activated prothrombin complex concentrates) for the prevention and treatment of bleeding episodes. The use of these agents typically requires intravenous injections and sometimes hospitalization, which can be burdensome for patients. More recently, emicizumab, a bispecific antibody that mimics the function of activated clotting factor VIII, has demonstrated favorable efficacy for prophylaxis in patients with hemophilia A and inhibitors, representing a promising new therapeutic strategy. Ongoing research aims to discover and develop easy-to-use nonfactor agents for managing hemophilia with inhibitors. This review summarizes the current understanding of the pathophysiology of inhibitor development in hemophilia, outlines existing treatment options, and discusses advancements in novel therapeutic biologics, including a recombinant activated clotting factor VII variant (marzeptacog alfa), a new bispecific antibody (Mim8), antitissue factor pathway inhibitor antibodies (concizumab and marstacimab), and small interfering RNA targeting antithrombin (fitusiran). All of these agents are administered subcutaneously, with some offering the convenience of less frequent dosing (e.g., weekly or monthly). These potential drug candidates may provide significant benefits for the prophylaxis or treatment of bleeding disorders in patients with hemophilia and inhibitors.
AB - Patients with hemophilia A and B who have inhibitors face limited treatment options, because replacement therapy with clotting factor VIII or IX concentrates is ineffective, particularly for patients with high-titer inhibitors. Current mainstay therapies include immune tolerance induction (through frequent injections of clotting factor VIII or IX concentrates) to eradicate inhibitors and bypassing agents (such as recombinant activated clotting factor VII and activated prothrombin complex concentrates) for the prevention and treatment of bleeding episodes. The use of these agents typically requires intravenous injections and sometimes hospitalization, which can be burdensome for patients. More recently, emicizumab, a bispecific antibody that mimics the function of activated clotting factor VIII, has demonstrated favorable efficacy for prophylaxis in patients with hemophilia A and inhibitors, representing a promising new therapeutic strategy. Ongoing research aims to discover and develop easy-to-use nonfactor agents for managing hemophilia with inhibitors. This review summarizes the current understanding of the pathophysiology of inhibitor development in hemophilia, outlines existing treatment options, and discusses advancements in novel therapeutic biologics, including a recombinant activated clotting factor VII variant (marzeptacog alfa), a new bispecific antibody (Mim8), antitissue factor pathway inhibitor antibodies (concizumab and marstacimab), and small interfering RNA targeting antithrombin (fitusiran). All of these agents are administered subcutaneously, with some offering the convenience of less frequent dosing (e.g., weekly or monthly). These potential drug candidates may provide significant benefits for the prophylaxis or treatment of bleeding disorders in patients with hemophilia and inhibitors.
KW - anti-TFPI antibody
KW - antithrombin siRNA
KW - bispecific antibody
KW - bypassing agents
KW - hemophilia with inhibitors
UR - http://www.scopus.com/inward/record.url?scp=85208668474&partnerID=8YFLogxK
U2 - 10.1021/acsptsci.4c00560
DO - 10.1021/acsptsci.4c00560
M3 - Review article
AN - SCOPUS:85208668474
SN - 2575-9108
VL - 7
SP - 3795
EP - 3803
JO - ACS Pharmacology and Translational Science
JF - ACS Pharmacology and Translational Science
IS - 12
ER -