TY - JOUR
T1 - Diabetes Mellitus Risk Prediction in the Framingham Offspring Study and Large Population Analysis
AU - Ai, Masumi
AU - Otokozawa, Seiko
AU - Liu, Ching Ti
AU - Asztalos, Bela F.
AU - Maddalena, Julia
AU - Diffenderfer, Margaret R.
AU - Russo, Giuseppina
AU - Thongtang, Nuntakorn
AU - Dansinger, Michael L.
N1 - Publisher Copyright:
© 2025 by the authors.
PY - 2025/4
Y1 - 2025/4
N2 - Background: Diabetes mellitus is a major cause of death and a significant risk factor for cardiovascular disease, kidney failure, neuropathy, and retinopathy. Our objectives were to develop a diabetes risk model and apply it to a large population. Methods: Non-diabetic adults in the Framingham Offspring Study (n = 2416) were followed for 10 years for new diabetes. At baseline, the fasting serum glucose, adiponectin, insulin, glycated albumin, total cholesterol, triglycerides (TG), and high-density lipoprotein cholesterol (HDL-C) were measured using standardized automated assays. Standard health information was collected. Diabetes risk prediction models were developed using logistic regression analysis and applied to a large population (n = 133,764). Results: In this prospective study, 166 subjects (6.9%) developed new-onset diabetes. Glucose, body mass index (BMI), log adiponectin, % log glycated albumin, parental diabetes, TG, and the use of cholesterol-lowering medications entered the model (C statistic: 0.924; 0.898, biochemical variables: 0.898, and fasting glucose: only 0.876). In the population in non-diabetic subjects (56.3) and prediabetic subjects (36.2%), the predicted 10-year diabetes risk rates were 0.4% and 5.5% with the biochemical model, respectively. Prediabetic and diabetic subjects were insulin-resistant compared to non-diabetic subjects, but only those with diabetes had significant reductions in their insulin production. Conclusions: The 10-year risk of diabetes can be accurately predicted and applied to large populations. Fasting glucose alone is diagnostic for diabetes and is an excellent predictor of future diabetes, with having prediabetes increasing the risk 6-fold. Insulin and C-peptide measurements are useful in diabetic subjects to detect decreased insulin production and the need for insulin therapy.
AB - Background: Diabetes mellitus is a major cause of death and a significant risk factor for cardiovascular disease, kidney failure, neuropathy, and retinopathy. Our objectives were to develop a diabetes risk model and apply it to a large population. Methods: Non-diabetic adults in the Framingham Offspring Study (n = 2416) were followed for 10 years for new diabetes. At baseline, the fasting serum glucose, adiponectin, insulin, glycated albumin, total cholesterol, triglycerides (TG), and high-density lipoprotein cholesterol (HDL-C) were measured using standardized automated assays. Standard health information was collected. Diabetes risk prediction models were developed using logistic regression analysis and applied to a large population (n = 133,764). Results: In this prospective study, 166 subjects (6.9%) developed new-onset diabetes. Glucose, body mass index (BMI), log adiponectin, % log glycated albumin, parental diabetes, TG, and the use of cholesterol-lowering medications entered the model (C statistic: 0.924; 0.898, biochemical variables: 0.898, and fasting glucose: only 0.876). In the population in non-diabetic subjects (56.3) and prediabetic subjects (36.2%), the predicted 10-year diabetes risk rates were 0.4% and 5.5% with the biochemical model, respectively. Prediabetic and diabetic subjects were insulin-resistant compared to non-diabetic subjects, but only those with diabetes had significant reductions in their insulin production. Conclusions: The 10-year risk of diabetes can be accurately predicted and applied to large populations. Fasting glucose alone is diagnostic for diabetes and is an excellent predictor of future diabetes, with having prediabetes increasing the risk 6-fold. Insulin and C-peptide measurements are useful in diabetic subjects to detect decreased insulin production and the need for insulin therapy.
KW - C-peptide
KW - diabetes mellitus
KW - glucose
KW - insulin
KW - risk prediction model
KW - the Framingham Offspring Study
UR - http://www.scopus.com/inward/record.url?scp=105002383568&partnerID=8YFLogxK
U2 - 10.3390/nu17071117
DO - 10.3390/nu17071117
M3 - Article
AN - SCOPUS:105002383568
SN - 2072-6643
VL - 17
JO - Nutrients
JF - Nutrients
IS - 7
M1 - 1117
ER -