TY - JOUR
T1 - How Microbiomes Affect Skin Aging
T2 - The Updated Evidence and Current Perspectives
AU - Ratanapokasatit, Yanisa
AU - Laisuan, Wannada
AU - Rattananukrom, Teerapong
AU - Petchlorlian, Aisawan
AU - Thaipisuttikul, Iyarit
AU - Sompornrattanaphan, Mongkhon
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/7
Y1 - 2022/7
N2 - The skin has a multifactorial aging process, caused by both intrinsic and extrinsic factors. A major theory of aging involves cellular senescence or apoptosis resulting from oxidative damage as the skin’s antioxidant system tends to weaken with age. The human microbiota is a complex ecosystem that is made up of microorganisms (bacteria, fungi, and viruses). Both gut and skin microbiota have essential roles in the protection against invading pathogens, mediating inflammatory conditions, and the modulation of the immune system which is involved in both innate and adaptive immune responses. However, the human microbiome could be changed during the life stage and affected by various perturbations. An alteration of the intestinal bacteria results in “microbial dysbiosis” which is associated with the influence of various diseases, including aging. The skin interactome is a novel integration of the “genome-microbiome-exposome” that plays a significant role in skin aging and skin health. Mitigating the negative impacts of factors influencing the skin interactome should be the future strategy to protect, prevent, and delay skin aging along with preserving healthy skin conditions. This review summarizes the current evidence on how human microbiomes affect skin aging and demonstrates the possible interventions, relating to human microbiomes, to modulate skin health and aging. Probiotics-based products are currently available mainly for the add-on treatment of many dermatologic conditions. However, at this point, there are limited clinical studies on skin anti-aging purposes and more are required as this evolving concept is on the rise and might provide an insight into future therapeutic options.
AB - The skin has a multifactorial aging process, caused by both intrinsic and extrinsic factors. A major theory of aging involves cellular senescence or apoptosis resulting from oxidative damage as the skin’s antioxidant system tends to weaken with age. The human microbiota is a complex ecosystem that is made up of microorganisms (bacteria, fungi, and viruses). Both gut and skin microbiota have essential roles in the protection against invading pathogens, mediating inflammatory conditions, and the modulation of the immune system which is involved in both innate and adaptive immune responses. However, the human microbiome could be changed during the life stage and affected by various perturbations. An alteration of the intestinal bacteria results in “microbial dysbiosis” which is associated with the influence of various diseases, including aging. The skin interactome is a novel integration of the “genome-microbiome-exposome” that plays a significant role in skin aging and skin health. Mitigating the negative impacts of factors influencing the skin interactome should be the future strategy to protect, prevent, and delay skin aging along with preserving healthy skin conditions. This review summarizes the current evidence on how human microbiomes affect skin aging and demonstrates the possible interventions, relating to human microbiomes, to modulate skin health and aging. Probiotics-based products are currently available mainly for the add-on treatment of many dermatologic conditions. However, at this point, there are limited clinical studies on skin anti-aging purposes and more are required as this evolving concept is on the rise and might provide an insight into future therapeutic options.
KW - aging
KW - biology
KW - dermatological and cosmetological treatments
KW - dietary
KW - microbiome
KW - microbiota
KW - mycobiome
KW - pharmacology
KW - probiotics
UR - http://www.scopus.com/inward/record.url?scp=85133201944&partnerID=8YFLogxK
U2 - 10.3390/life12070936
DO - 10.3390/life12070936
M3 - Review article
AN - SCOPUS:85133201944
SN - 2075-1729
VL - 12
JO - Life
JF - Life
IS - 7
M1 - 936
ER -