TY - JOUR
T1 - Identifying the in vivo-induced antigenic genes is a strategy to develop DNA vaccine against Nocardia seriolae in hybrid snakehead (Channa maculata ♀ × Channa argus ♂)
AU - Weng, Tingting
AU - Chen, Guoquan
AU - Li, Na
AU - Sirimanapong, Wanna
AU - Huang, Ting
AU - Chen, Jianlin
AU - Xia, Liqun
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/4
Y1 - 2024/4
N2 - Nocardia seriolae has been identified as the causative agent of fish nocardiosis, resulting in serious economic losses in aquaculture. With an aim to screen potential candidates for vaccine development against N. seriolae, the in vivo-induced genes of N. seriolae in hybrid snakehead (Channa maculate ♀ × Channa argus ♂) model were profiled via in vivo-induced antigen technology (IVIAT) in the present study, and 6 in vivo-induced genes were identified as follows: IS701 family transposase (is701), membrane protein insertase YidC (yidC), ergothioneine biosynthesis glutamate-cysteine ligase (egtA), molybdopterin respectively-dependent oxidoreductase (mol), phosphoketolase family protein (Ppl), hypothetical protein 6747 (hp6747). Additionally, the yidC was inserted into eukaryotic expression vector pcDNA3.1-myc-his-A to construct a DNA vaccine named as pcDNA-YidC to evaluate immunoprotection in hybrid snakehead after artificial challenge with N. serioale. Results showed that the transcription of yidC was detected in spleen, trunk kidney, muscle and liver in vaccinated fish, suggesting that this antigenic gene can be recombinantly expressed in fish. Meanwhile, indexes of humoral immunity were evaluated in the vaccinated fish through assessing specific-antibody IgM and serum enzyme activities, including lysozyme (LZM), superoxide dismutase (SOD), acid phosphatase (ACP) and alkaline phosphatase (AKP). Quantitative real-time PCR analysis indicated that pcDNA-YidC DNA vaccine could notably enhance the expression of immune-related genes (CD4、CD8α、MHCIIα、TNFα、IL-1β and MHCIα) in 4 tissues (spleen, trunk kidney, muscle and liver) of the vaccinated fish. Finally, an immuno-protection with a relative survival rate of 65.71 % was displayed in vaccinated fish in comparison to the control groups. Taken together, these results indicate that pcDNA-YidC DNA vaccine could boost strong immune responses in hybrid snakehead and show preferably protective efficacy against N. seriolae, indicating that IVIAT is a helpful strategy to screen the highly immunogenic antigens for vaccine development against fish nocardiosis.
AB - Nocardia seriolae has been identified as the causative agent of fish nocardiosis, resulting in serious economic losses in aquaculture. With an aim to screen potential candidates for vaccine development against N. seriolae, the in vivo-induced genes of N. seriolae in hybrid snakehead (Channa maculate ♀ × Channa argus ♂) model were profiled via in vivo-induced antigen technology (IVIAT) in the present study, and 6 in vivo-induced genes were identified as follows: IS701 family transposase (is701), membrane protein insertase YidC (yidC), ergothioneine biosynthesis glutamate-cysteine ligase (egtA), molybdopterin respectively-dependent oxidoreductase (mol), phosphoketolase family protein (Ppl), hypothetical protein 6747 (hp6747). Additionally, the yidC was inserted into eukaryotic expression vector pcDNA3.1-myc-his-A to construct a DNA vaccine named as pcDNA-YidC to evaluate immunoprotection in hybrid snakehead after artificial challenge with N. serioale. Results showed that the transcription of yidC was detected in spleen, trunk kidney, muscle and liver in vaccinated fish, suggesting that this antigenic gene can be recombinantly expressed in fish. Meanwhile, indexes of humoral immunity were evaluated in the vaccinated fish through assessing specific-antibody IgM and serum enzyme activities, including lysozyme (LZM), superoxide dismutase (SOD), acid phosphatase (ACP) and alkaline phosphatase (AKP). Quantitative real-time PCR analysis indicated that pcDNA-YidC DNA vaccine could notably enhance the expression of immune-related genes (CD4、CD8α、MHCIIα、TNFα、IL-1β and MHCIα) in 4 tissues (spleen, trunk kidney, muscle and liver) of the vaccinated fish. Finally, an immuno-protection with a relative survival rate of 65.71 % was displayed in vaccinated fish in comparison to the control groups. Taken together, these results indicate that pcDNA-YidC DNA vaccine could boost strong immune responses in hybrid snakehead and show preferably protective efficacy against N. seriolae, indicating that IVIAT is a helpful strategy to screen the highly immunogenic antigens for vaccine development against fish nocardiosis.
KW - DNA vaccine
KW - Hybrid snakehead
KW - In vivo-induced antigen technology (IVIAT)
KW - Nocardia seriolae
KW - yidC
UR - http://www.scopus.com/inward/record.url?scp=85184879513&partnerID=8YFLogxK
U2 - 10.1016/j.fsi.2024.109410
DO - 10.1016/j.fsi.2024.109410
M3 - Article
C2 - 38309489
AN - SCOPUS:85184879513
SN - 1050-4648
VL - 147
JO - Fish and Shellfish Immunology
JF - Fish and Shellfish Immunology
M1 - 109410
ER -