In vitro roles of burkholderia intracellular motility a (bima) in infection of human neuroblastoma cell line

Niramol Jitprasutwit, Amporn Rungruengkitkun, Sanisa Lohitthai, Onrapak Reamtong, Nitaya Indrawattana, Nitat Sookrung, Thaniya Sricharunrat, Passanesh Sukphopetch, Narisara Chatratita, Pornpan Pumirat

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

The bacterial pathogen Burkholderia pseudomallei causes human melioidosis, which can infect the brain, leading to encephalitis and brain abscesses. Infection of the nervous system is a rare condition but is associated with an increased risk of mortality. Burkholderia intracellular motility A (BimA) was reported to play an important role in the invasion and infection of the central nervous system in a mouse model. Thus, to gain insight of the cellular mechanisms underlying the pathogenesis of neurological melioidosis, we explored the human neuronal proteomics to identify the host factors that are up-and downregulated during Burkholderia infection. When infected the SHSY5Y cells with B. pseudomallei K96243 wild-Type (WT), 194 host proteins showed a fold change of .2 compared with uninfected cells. Moreover, 123 proteins showed a fold change of .2 when infected with a knockout bimA mutant (DbimA) mutant compared with WT. The differentially expressed proteins were mainly associated with metabolic pathways and pathways linked to human diseases. Importantly, we observed the downregulation of proteins in the apoptosis and cytotoxicity pathway, and in vitro investigation with the DbimA mutant revealed the association of BimA with the induction of these pathways. Additionally, we disclosed that BimA was not required for invasion into the neuron cell line but was necessary for effective intracellular replication and multinucleated giant cell (MNGC) formation. These findings show the extraordinary capacity of B. pseudomallei in subverting and interfering with host cellular systems to establish infection and extend our understanding of B. pseudomallei BimA involvement in the pathogenesis of neurological melioidosis. IMPORTANCE Neurological melioidosis, caused by Burkholderia pseudomallei, can result in severe neurological damage and enhance the mortality rate of melioidosis patients. We investigate the involvement of the virulent factor BimA, which mediates actin-based motility, in the intracellular infection of neuroblastoma SH-SY5Y cells. Using proteomicsbased analysis, we provide a list of host factors exploited by B. pseudomallei. The expression level of selected downregulated proteins in neuron cells infected with the DbimA mutant was determined by quantitative reverse transcription-PCR and was consistent with our proteomic data. The role of BimA in the apoptosis and cytotoxicity of SH-SY5Y cells infected by B. pseudomallei was uncovered in this study. Additionally, our research demonstrates that BimA is required for successful intracellular survival and cell fusion upon infection of neuron cells. Our findings have significant implications for understanding the pathogenesis of B. pseudomallei infections and developing novel therapeutic strategies to combat this deadly disease.

Original languageEnglish
JournalMicrobiology Spectrum
Volume11
Issue number4
DOIs
Publication statusPublished - Aug 2023

Keywords

  • BimA
  • Burkholderia pseudomallei
  • actin-based motility
  • human neuroblastoma cells
  • proteomics

Fingerprint

Dive into the research topics of 'In vitro roles of burkholderia intracellular motility a (bima) in infection of human neuroblastoma cell line'. Together they form a unique fingerprint.

Cite this