TY - JOUR
T1 - Longitudinal analysis to characterize classes and subclasses of antibody responses to recombinant receptor-binding protein (RBD) of SARS-CoV-2 in COVID-19 patients in Thailand
AU - Tandhavanant, Sarunporn
AU - Koosakunirand, Sirikamon
AU - Kaewarpai, Taniya
AU - Piyaphanee, Watcharapong
AU - Leaungwutiwong, Pornsawan
AU - Luvira, Viravarn
AU - Chantratita, Narisara
N1 - Publisher Copyright:
© 2021 Tandhavanant et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/8
Y1 - 2021/8
N2 - Serological assays to detect antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might contribute to confirming the suspected coronavirus disease 2019 (COVID-19) in patients not detected with molecular assays. Human antibodies that target the host angiotensin-converting enzyme 2-binding domain of the viral spike protein are a target for serodiagnosis and therapeutics. This study aimed to characterize the classes and subclasses of antibody responses to a recombinant receptor-binding protein (RBD) of SARS-CoV-2 in COVID-19 patients and investigated the reactivity of these antibodies in patients with other tropical infections and healthy individuals in Thailand. ELISAs for IgM, IgA, IgG and IgG subclasses based on RBD antigen were developed and tested with time series of 27 serum samples from 15 patients with COVID-19 and 60 samples from pre-COVID-19 outbreaks including acute dengue fever, murine typhus, influenza, leptospirosis and healthy individuals. Both RBD-specific IgA and IgG were detected in only 21% of the COVID-19 patients in the acute phase. The median IgA and IgG levels were significantly higher in the convalescent serum sample compared to the acute serum sample (P < 0.05). We observed the highest correlation between levels of IgG and IgA (rho = 0. 92). IgG1 and IgG3 were the major IgG subclasses detected in SARS-CoV-2 infection. Only acute IgG3 level was negatively associated with viral detection based on RT-PCR of ORF1ab gene (rho = -0.57). The median IgA and IgG levels in convalescence sera of COVID-19 patients were significantly higher than healthy individuals and convalescent sera of other febrile infectious patients. The analyses of antibody classes and subclasses provide insights into human immune responses against SARS-CoV-2 during natural infection and interpretation of antibody assays.
AB - Serological assays to detect antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might contribute to confirming the suspected coronavirus disease 2019 (COVID-19) in patients not detected with molecular assays. Human antibodies that target the host angiotensin-converting enzyme 2-binding domain of the viral spike protein are a target for serodiagnosis and therapeutics. This study aimed to characterize the classes and subclasses of antibody responses to a recombinant receptor-binding protein (RBD) of SARS-CoV-2 in COVID-19 patients and investigated the reactivity of these antibodies in patients with other tropical infections and healthy individuals in Thailand. ELISAs for IgM, IgA, IgG and IgG subclasses based on RBD antigen were developed and tested with time series of 27 serum samples from 15 patients with COVID-19 and 60 samples from pre-COVID-19 outbreaks including acute dengue fever, murine typhus, influenza, leptospirosis and healthy individuals. Both RBD-specific IgA and IgG were detected in only 21% of the COVID-19 patients in the acute phase. The median IgA and IgG levels were significantly higher in the convalescent serum sample compared to the acute serum sample (P < 0.05). We observed the highest correlation between levels of IgG and IgA (rho = 0. 92). IgG1 and IgG3 were the major IgG subclasses detected in SARS-CoV-2 infection. Only acute IgG3 level was negatively associated with viral detection based on RT-PCR of ORF1ab gene (rho = -0.57). The median IgA and IgG levels in convalescence sera of COVID-19 patients were significantly higher than healthy individuals and convalescent sera of other febrile infectious patients. The analyses of antibody classes and subclasses provide insights into human immune responses against SARS-CoV-2 during natural infection and interpretation of antibody assays.
UR - http://www.scopus.com/inward/record.url?scp=85112340574&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0255796
DO - 10.1371/journal.pone.0255796
M3 - Article
C2 - 34375345
AN - SCOPUS:85112340574
SN - 1932-6203
VL - 16
JO - PLoS ONE
JF - PLoS ONE
IS - 8 August
M1 - e0255796
ER -