TY - JOUR
T1 - Neuroprotective thiazole sulfonamides against 6-OHDA-induced Parkinsonian model
T2 - in vitro biological and in silico pharmacokinetic assessments
AU - Ruankham, Waralee
AU - Pingaew, Ratchanok
AU - Prachayasittikul, Veda
AU - Worachartcheewan, Apilak
AU - Sathuphong, Suphissara
AU - Apiraksattayakul, Setthawut
AU - Tantimongcolwat, Tanawut
AU - Prachayasittikul, Virapong
AU - Prachayasittikul, Supaluk
AU - Phopin, Kamonrat
N1 - Publisher Copyright:
© 2025 The Royal Society of Chemistry.
PY - 2025/2/10
Y1 - 2025/2/10
N2 - The limitations of currently existing medications in delaying or halting the development of Parkinson's disease (PD) remain dramatically problematic, making it the second most prevalent neurodegenerative disorder. Moreover, it is expected that the number of PD cases will double within the next 30 years. Herein, to discover a novel neuroprotective therapeutic strategy, a series of multifunctional thiazole sulfonamides underwent preliminary assessment owing to their neuroprotective capabilities against 6-hydroxydopamine (6-OHDA)-induced damage in human neuronal SH-SY5Y cells. Pretreatment with novel synthetic hybrids, including 1, 2, and 8, significantly improved cell viability, reduced lactate dehydrogenase (LDH) leakage, prevented mitochondrial dysfunction, and mitigated intracellular oxidative stress. Insight molecular mechanisms and potential targets of these compounds were elucidated through their activation and binding interaction with sirtuin 1 (SIRT1), suggesting their influencing roles on relevant downstream cascades of PD. Furthermore, in silico pharmacokinetic analysis revealed the drug-likeness of these three hybrids, which are capable of being distributed into the central nervous system (CNS) with slight toxicity. Therefore, these novel neuroprotective thiazole sulfonamides are promising candidates for further development (i.e., in vivo and clinical trials) of effective PD therapy.
AB - The limitations of currently existing medications in delaying or halting the development of Parkinson's disease (PD) remain dramatically problematic, making it the second most prevalent neurodegenerative disorder. Moreover, it is expected that the number of PD cases will double within the next 30 years. Herein, to discover a novel neuroprotective therapeutic strategy, a series of multifunctional thiazole sulfonamides underwent preliminary assessment owing to their neuroprotective capabilities against 6-hydroxydopamine (6-OHDA)-induced damage in human neuronal SH-SY5Y cells. Pretreatment with novel synthetic hybrids, including 1, 2, and 8, significantly improved cell viability, reduced lactate dehydrogenase (LDH) leakage, prevented mitochondrial dysfunction, and mitigated intracellular oxidative stress. Insight molecular mechanisms and potential targets of these compounds were elucidated through their activation and binding interaction with sirtuin 1 (SIRT1), suggesting their influencing roles on relevant downstream cascades of PD. Furthermore, in silico pharmacokinetic analysis revealed the drug-likeness of these three hybrids, which are capable of being distributed into the central nervous system (CNS) with slight toxicity. Therefore, these novel neuroprotective thiazole sulfonamides are promising candidates for further development (i.e., in vivo and clinical trials) of effective PD therapy.
UR - http://www.scopus.com/inward/record.url?scp=85217835824&partnerID=8YFLogxK
U2 - 10.1039/d4ra04941a
DO - 10.1039/d4ra04941a
M3 - Article
AN - SCOPUS:85217835824
SN - 2046-2069
VL - 15
SP - 4281
EP - 4295
JO - RSC Advances
JF - RSC Advances
IS - 6
ER -