TY - JOUR
T1 - Palm Kernel Meal Protein Hydrolysates Enhance Post-Thawed Boar Sperm Quality
AU - Khophloiklang, Vassakorn
AU - Chanapiwat, Panida
AU - Aunpad, Ratchaneewan
AU - Kaeoket, Kampon
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/10
Y1 - 2023/10
N2 - Boar sperm is sensitive to particular conditions during cryopreservation, resulting in an extreme reduction in fertilizing ability due to damage to the sperm membranes. PKMPH contains bioactive peptides that have antioxidant and antimicrobial activities. There is no information on the use of palm-kernel-meal-derived bioactive peptides for boar semen cryopreservation. This study aimed to examine the effects of bioactive peptides from PKMPH on post-thawed boar sperm quality. Boar semen ejaculates (n = 17) were collected and divided into six equal aliquots based on PKMPH concentrations (0, 1.25, 2.5, 5, 10, and 15 µg/mL) in a freezing extender. Semen samples were processed and cryopreserved using the liquid nitrogen vapor method. Thereafter, the frozen semen samples were thawed at 50 °C for 12 s and evaluated for sperm motility using a computer-assisted sperm analyzer and for sperm viability, acrosome integrity, mitochondrial function, and lipid peroxidation by measuring the level of malondialdehyde (MDA). The results demonstrate that the supplementation of PKMPH with 2.5 µg/mL afforded superior post-thawed sperm qualities, such as increased total motility, viability, acrosome integrity, and mitochondrial function by 10.7%, 12.3%, 18.3%, and 12.7%, respectively, when compared to the control group. PKMPH at a concentration of 2.5 µg/mL showed the lowest level of MDA (40.6 ± 2.0 µMol/L) compared to the other groups. In conclusion, adding PKMPH peptides at 2.5 µg/mL to the freezing extender reduced the oxidative damage associated with cryopreservation and resulted in higher post-thawed sperm quality.
AB - Boar sperm is sensitive to particular conditions during cryopreservation, resulting in an extreme reduction in fertilizing ability due to damage to the sperm membranes. PKMPH contains bioactive peptides that have antioxidant and antimicrobial activities. There is no information on the use of palm-kernel-meal-derived bioactive peptides for boar semen cryopreservation. This study aimed to examine the effects of bioactive peptides from PKMPH on post-thawed boar sperm quality. Boar semen ejaculates (n = 17) were collected and divided into six equal aliquots based on PKMPH concentrations (0, 1.25, 2.5, 5, 10, and 15 µg/mL) in a freezing extender. Semen samples were processed and cryopreserved using the liquid nitrogen vapor method. Thereafter, the frozen semen samples were thawed at 50 °C for 12 s and evaluated for sperm motility using a computer-assisted sperm analyzer and for sperm viability, acrosome integrity, mitochondrial function, and lipid peroxidation by measuring the level of malondialdehyde (MDA). The results demonstrate that the supplementation of PKMPH with 2.5 µg/mL afforded superior post-thawed sperm qualities, such as increased total motility, viability, acrosome integrity, and mitochondrial function by 10.7%, 12.3%, 18.3%, and 12.7%, respectively, when compared to the control group. PKMPH at a concentration of 2.5 µg/mL showed the lowest level of MDA (40.6 ± 2.0 µMol/L) compared to the other groups. In conclusion, adding PKMPH peptides at 2.5 µg/mL to the freezing extender reduced the oxidative damage associated with cryopreservation and resulted in higher post-thawed sperm quality.
KW - antioxidant
KW - boar sperm
KW - freezing
KW - palm kernel meal protein hydrolysates
KW - peptides
UR - http://www.scopus.com/inward/record.url?scp=85173850632&partnerID=8YFLogxK
U2 - 10.3390/ani13193040
DO - 10.3390/ani13193040
M3 - Article
AN - SCOPUS:85173850632
SN - 2076-2615
VL - 13
JO - Animals
JF - Animals
IS - 19
M1 - 3040
ER -